Skip to main content
freelanceshack.com

Back to all posts

How to Create Nested Json Data In Pandas?

Published on
5 min read
How to Create Nested Json Data In Pandas? image

Best Pandas Libraries to Manage JSON Data to Buy in October 2025

1 Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual

Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual

BUY & SAVE
$19.99
Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visual
2 Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

BUY & SAVE
$43.99 $79.99
Save 45%
Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter
3 HAMAMONYO Tenugui 'Pandas’ Library'

HAMAMONYO Tenugui 'Pandas’ Library'

  • SOFT, PREMIUM 100% COTTON FOR ULTIMATE COMFORT AND DURABILITY.
  • GENEROUS SIZE: 35.4 IN×13.4 IN FOR VERSATILE USE AND COVERAGE.
  • UNIQUE DESIGN: BOTH SIDES FRAY FOR A STYLISH, AUTHENTIC LOOK.
BUY & SAVE
$15.00
HAMAMONYO Tenugui 'Pandas’ Library'
4 Miss Adola Aesthetic Panda Tote Bag for Women - with Magnetic Buckle and Zipper Inner Pocket for Lady Cloth Cotton Tote Bag for Gym, Work, Travel, Library, Shopping,Full Panda

Miss Adola Aesthetic Panda Tote Bag for Women - with Magnetic Buckle and Zipper Inner Pocket for Lady Cloth Cotton Tote Bag for Gym, Work, Travel, Library, Shopping,Full Panda

  • SECURE YOUR BELONGINGS WITH A MAGNETIC BUCKLE AND ZIPPERED POCKET.

  • SPACIOUS DESIGN IDEAL FOR WORK, PLAY, OR SHOPPING ADVENTURES.

  • ECO-FRIENDLY AND REUSABLE, PERFECT FOR EVERYDAY USE OR ERRANDS.

BUY & SAVE
$12.99
Miss Adola Aesthetic Panda Tote Bag for Women - with Magnetic Buckle and Zipper Inner Pocket for Lady Cloth Cotton Tote Bag for Gym, Work, Travel, Library, Shopping,Full Panda
5 Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python

Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python

BUY & SAVE
$35.74 $49.99
Save 29%
Pandas Cookbook: Practical recipes for scientific computing, time series, and exploratory data analysis using Python
6 SRADMO Reading Room Decor, Panda Read Books Wood Box Sign Desk Decor, Panda Gifts, Book Theme Wooden Block Box Decoration for Reading Nook Corner Library Classroom Desk Shelf Table

SRADMO Reading Room Decor, Panda Read Books Wood Box Sign Desk Decor, Panda Gifts, Book Theme Wooden Block Box Decoration for Reading Nook Corner Library Classroom Desk Shelf Table

  • RUSTIC WOODEN BOX SIGN ENHANCES ANY DECOR STYLE EFFORTLESSLY.
  • PERFECT GIFT FOR BIRTHDAYS, HOLIDAYS, AND SPECIAL OCCASIONS.
  • COMPACT 5X5 INCHES SIZE FITS SEAMLESSLY IN ANY SPACE.
BUY & SAVE
$12.99 $13.99
Save 7%
SRADMO Reading Room Decor, Panda Read Books Wood Box Sign Desk Decor, Panda Gifts, Book Theme Wooden Block Box Decoration for Reading Nook Corner Library Classroom Desk Shelf Table
7 A Perfect Time for Pandas

A Perfect Time for Pandas

BUY & SAVE
$6.30 $7.20
Save 12%
A Perfect Time for Pandas
8 20 Sets DIY 3D Scene Sticker Book for Adults,Cute Sticker Therapy 3D Scenes Relief Stress Pass -Bakery, Library, Panda Supermarket,Tea Party

20 Sets DIY 3D Scene Sticker Book for Adults,Cute Sticker Therapy 3D Scenes Relief Stress Pass -Bakery, Library, Panda Supermarket,Tea Party

  • RELAX & CREATE TOGETHER: PERFECT MINDFULNESS ACTIVITY FOR ALL AGES.

  • EASY APPLICATION: INCLUDES PRECISION TWEEZERS FOR STRESS-FREE CRAFTING.

  • UNIQUE GIFT IDEA: IDEAL FOR BIRTHDAYS AND HOLIDAYS, SPARKS CREATIVITY!

BUY & SAVE
$15.87
20 Sets DIY 3D Scene Sticker Book for Adults,Cute Sticker Therapy 3D Scenes Relief Stress Pass -Bakery, Library, Panda Supermarket,Tea Party
+
ONE MORE?

To create nested JSON data in Pandas, you can use the to_json() method along with specifying the orient parameter as 'records' or 'index'. By setting the orient parameter to 'records', you can create nested JSON data where each record is a nested JSON object. Conversely, by setting the orient parameter to 'index', you can create a nested JSON structure where the index of the DataFrame becomes a key in the JSON object. Additionally, you can use the to_dict() method along with specifying the orient parameter as 'records' or 'index' to convert the DataFrame to a nested dictionary object.

How to transform nested JSON data into a flat structure in Pandas?

One way to transform nested JSON data into a flat structure in Pandas is by using the json_normalize function. This function converts a JSON object into a flat table. Here's an example of how to use it:

import pandas as pd from pandas import json_normalize

sample nested JSON data

nested_json = { 'name': 'John', 'age': 30, 'address': { 'street': '123 Main St', 'city': 'New York', 'zip': '10001' } }

normalize the nested JSON data

flat_data = json_normalize(nested_json)

create a DataFrame from the normalized data

df = pd.DataFrame(flat_data)

print the resulting DataFrame

print(df)

This will output a DataFrame with the flattened structure of the nested JSON data:

name age address.street address.city address.zip 0 John 30 123 Main St New York 10001

Alternatively, you can use the pd.json_normalize() function directly on a JSON file or string:

import pandas as pd

sample nested JSON data as a string

nested_json_str = ''' { "name": "John", "age": 30, "address": { "street": "123 Main St", "city": "New York", "zip": "10001" } } '''

normalize the nested JSON data

flat_data = pd.json_normalize(nested_json_str)

create a DataFrame from the normalized data

df = pd.DataFrame(flat_data)

print the resulting DataFrame

print(df)

This will also output a DataFrame with the flattened structure of the nested JSON data:

name age address.street address.city address.zip 0 John 30 123 Main St New York 10001

How to structure data in nested JSON format in Pandas?

In pandas, you can structure data in nested JSON format by using the to_json() method with the orient='records' parameter. This parameter allows you to specify the format of the JSON output, including nested structures.

Here is an example of how to structure data in nested JSON format in pandas:

import pandas as pd

Create a sample DataFrame with nested data

data = { 'id': [1, 2, 3], 'name': ['John', 'Alice', 'Bob'], 'details': [ {'age': 30, 'city': 'New York'}, {'age': 25, 'city': 'Los Angeles'}, {'age': 35, 'city': 'Chicago'} ] }

df = pd.DataFrame(data)

Convert DataFrame to nested JSON format

nested_json = df.to_json(orient='records')

print(nested_json)

Output:

[{"id":1,"name":"John","details":{"age":30,"city":"New York"}}, {"id":2,"name":"Alice","details":{"age":25,"city":"Los Angeles"}}, {"id":3,"name":"Bob","details":{"age":35,"city":"Chicago"}}]

In the output JSON, the details column is structured as a nested JSON object within each record.

How to merge nested JSON data from multiple sources in Pandas?

To merge nested JSON data from multiple sources in Pandas, you can follow these steps:

  1. Load the JSON data from each source into separate Pandas DataFrame objects.

import pandas as pd

Load JSON data from source 1

data1 = {'id': 1, 'name': 'John', 'details': {'age': 30, 'city': 'New York'}} df1 = pd.DataFrame([data1])

Load JSON data from source 2

data2 = {'id': 2, 'name': 'Jane', 'details': {'age': 25, 'city': 'Los Angeles'}} df2 = pd.DataFrame([data2])

  1. Merge the DataFrames on the unique identifier (e.g., 'id').

# Merge the DataFrames on 'id' merged_df = pd.concat([df1, df2], ignore_index=True)

  1. Expand the nested JSON data into separate columns.

# Expand nested JSON data into separate columns details_df = pd.json_normalize(merged_df['details']) merged_df = pd.concat([merged_df, details_df], axis=1) merged_df = merged_df.drop('details', axis=1)

  1. Now you have a single DataFrame with the merged and expanded nested JSON data from multiple sources.

print(merged_df)

This merged DataFrame will contain columns for 'id', 'name', 'age', and 'city' with the data from both sources combined.

How to handle complex nested JSON structures in Pandas?

Handling complex nested JSON structures in Pandas can be done by using the json_normalize function, which allows you to flatten nested JSON data into a DataFrame. Here's how you can handle complex nested JSON structures in Pandas:

  1. Load the JSON data into a Pandas DataFrame:

import pandas as pd import json

Load the JSON data from a file

with open('data.json') as f: data = json.load(f)

Convert the JSON data into a DataFrame

df = pd.json_normalize(data)

  1. Flatten nested JSON structures using json_normalize:

# Flatten nested JSON structures df = pd.json_normalize(data, sep='_')

  1. Handle specific nested structures by specifying the path to the nested JSON object:

# Flatten specific nested structures df = pd.json_normalize(data, record_path=['path_to_nested_object'], meta=['column1', 'column2'])

By using json_normalize, you can handle complex nested JSON structures in Pandas and work with the data in a tabular format. Additionally, you can further manipulate the DataFrame using Pandas functionalities for data analysis and visualization.