Skip to main content
freelanceshack.com

Back to all posts

How to Show Values In Pandas Pie Chart?

Published on
4 min read
How to Show Values In Pandas Pie Chart? image

Best Data Visualization Tools to Buy in October 2025

1 Storytelling with Data: A Data Visualization Guide for Business Professionals

Storytelling with Data: A Data Visualization Guide for Business Professionals

  • MASTER STORYTELLING TECHNIQUES TO ENHANCE DATA PRESENTATIONS.
  • LEARN EFFECTIVE VISUALIZATION TO MAKE DATA INSIGHTS CLEAR.
  • BOOST BUSINESS DECISIONS WITH POWERFUL DATA STORYTELLING SKILLS.
BUY & SAVE
$23.05 $41.95
Save 45%
Storytelling with Data: A Data Visualization Guide for Business Professionals
2 Hands-On Data Visualization: Interactive Storytelling From Spreadsheets to Code

Hands-On Data Visualization: Interactive Storytelling From Spreadsheets to Code

BUY & SAVE
$36.49 $65.99
Save 45%
Hands-On Data Visualization: Interactive Storytelling From Spreadsheets to Code
3 Data Visualization with Microsoft Power BI: How to Design Savvy Dashboards

Data Visualization with Microsoft Power BI: How to Design Savvy Dashboards

BUY & SAVE
$41.33 $59.99
Save 31%
Data Visualization with Microsoft Power BI: How to Design Savvy Dashboards
4 Python Data Science Handbook: Essential Tools for Working with Data

Python Data Science Handbook: Essential Tools for Working with Data

BUY & SAVE
$44.18 $79.99
Save 45%
Python Data Science Handbook: Essential Tools for Working with Data
5 Advanced Analytics with Power BI and Excel: Learn powerful visualization and data analysis techniques using Microsoft BI tools along with Python and R (English Edition)

Advanced Analytics with Power BI and Excel: Learn powerful visualization and data analysis techniques using Microsoft BI tools along with Python and R (English Edition)

BUY & SAVE
$37.95
Advanced Analytics with Power BI and Excel: Learn powerful visualization and data analysis techniques using Microsoft BI tools along with Python and R (English Edition)
6 Good Charts Workbook: Tips, Tools, and Exercises for Making Better Data Visualizations

Good Charts Workbook: Tips, Tools, and Exercises for Making Better Data Visualizations

BUY & SAVE
$17.58 $35.00
Save 50%
Good Charts Workbook: Tips, Tools, and Exercises for Making Better Data Visualizations
+
ONE MORE?

To show values in a pandas pie chart, you can use the "autopct" parameter in the pie() function. Set autopct='%1.1f%%' to display the percentage values on the pie chart. Additionally, you can use the "labels" parameter in the pie() function to display the actual values inside the pie slices. This will allow you to show the values in the pandas pie chart directly, making it easier for viewers to interpret the data.

How to create a 3D pie chart in pandas?

To create a 3D pie chart in pandas, you can use the matplotlib library which is built into pandas. Here is an example of how to create a 3D pie chart using pandas:

import pandas as pd import matplotlib.pyplot as plt

Create a sample dataframe

data = {'Category': ['A', 'B', 'C', 'D'], 'Values': [25, 30, 35, 10]} df = pd.DataFrame(data)

Plot a 3D pie chart

fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') ax.pie(df['Values'], labels=df['Category'], autopct='%1.1f%%', startangle=140) ax.set_title('3D Pie Chart')

Show the plot

plt.show()

This code will create a 3D pie chart with the sample data provided in the dataframe. You can customize the chart further by changing the colors, labels, and other properties as needed.

How to display percentages on a pandas pie chart?

To display percentages on a pandas pie chart, you can use the autopct parameter of the plot.pie() function. This parameter allows you to specify how to display the percentage values on the chart.

Here is an example code snippet to create a pandas pie chart with percentage values displayed:

import pandas as pd

Sample data

data = {'A': 20, 'B': 30, 'C': 50} df = pd.Series(data)

Create a pie chart with percentage values displayed

df.plot.pie(autopct='%1.1f%%')

In the autopct parameter, the formatting string '%1.1f%%' specifies that the percentage values should be displayed with one decimal place. You can adjust this formatting string to display percentages in different formats based on your requirements.

What is the significance of displaying percentages in a pandas pie chart?

Displaying percentages in a pandas pie chart can provide additional information and context to the data being visualized. It allows viewers to easily understand the proportion of each category in relation to the whole dataset. This can help in identifying any trends or patterns and make it easier to compare the different categories represented in the chart. Displaying percentages can also make it easier for viewers to quickly interpret the data and draw conclusions from the chart.

How to display specific values in a pandas pie chart?

To display specific values in a pandas pie chart, you can use the autopct parameter in the pie() method. This parameter allows you to format the displayed values in the chart. Here's an example of how you can display specific values in a pandas pie chart:

import pandas as pd import matplotlib.pyplot as plt

Create a sample dataframe

data = {'Sales': [1000, 1500, 800, 1200], 'Region': ['North', 'South', 'East', 'West']} df = pd.DataFrame(data)

Plot a pie chart

plt.figure(figsize=(8, 8)) plt.pie(df['Sales'], labels=df['Region'], autopct='%1.1f%%') plt.title('Sales by Region') plt.show()

In the above example, the autopct='%1.1f%%' parameter formats the displayed values in the pie chart to show the percentage of each value rounded to one decimal place. You can adjust the format string '%1.1f%%' to display the values in the desired format.

How to add data labels to a pandas pie chart?

To add data labels to a pandas pie chart, you can use the autopct parameter in the plot method. Here's an example:

import pandas as pd import matplotlib.pyplot as plt

Create a pandas DataFrame

data = { 'labels': ['A', 'B', 'C', 'D'], 'values': [25, 30, 20, 25] } df = pd.DataFrame(data)

Plot a pie chart

plt.figure(figsize=(6, 6)) df['values'].plot(kind='pie', labels=None, autopct='%1.1f%%')

Add data labels

plt.legend(labels=df['labels'], loc="upper right")

plt.show()

In this example, we set the autopct parameter to '%1.1f%%' to display the percentage values on the pie chart. Additionally, we use the legend method to show the labels next to the corresponding slices of the pie chart.