Skip to main content
freelanceshack.com

Back to all posts

How to Sort Pandas Dataframe By Month Name?

Published on
3 min read
How to Sort Pandas Dataframe By Month Name? image

Best Python Books to Buy in October 2025

1 Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming

Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming

BUY & SAVE
$27.53 $49.99
Save 45%
Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming
2 Python Programming for Beginners: The Complete Python Coding Crash Course - Boost Your Growth with an Innovative Ultra-Fast Learning Framework and Exclusive Hands-On Interactive Exercises & Projects

Python Programming for Beginners: The Complete Python Coding Crash Course - Boost Your Growth with an Innovative Ultra-Fast Learning Framework and Exclusive Hands-On Interactive Exercises & Projects

BUY & SAVE
$19.95
Python Programming for Beginners: The Complete Python Coding Crash Course - Boost Your Growth with an Innovative Ultra-Fast Learning Framework and Exclusive Hands-On Interactive Exercises & Projects
3 Fluent Python: Clear, Concise, and Effective Programming

Fluent Python: Clear, Concise, and Effective Programming

BUY & SAVE
$43.99 $79.99
Save 45%
Fluent Python: Clear, Concise, and Effective Programming
4 Learning Python: Powerful Object-Oriented Programming

Learning Python: Powerful Object-Oriented Programming

BUY & SAVE
$64.27 $79.99
Save 20%
Learning Python: Powerful Object-Oriented Programming
5 Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

BUY & SAVE
$43.99 $79.99
Save 45%
Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter
6 Python Pocket Reference: Python In Your Pocket (Pocket Reference (O'Reilly))

Python Pocket Reference: Python In Your Pocket (Pocket Reference (O'Reilly))

BUY & SAVE
$12.99 $24.99
Save 48%
Python Pocket Reference: Python In Your Pocket (Pocket Reference (O'Reilly))
7 Python Programming for Beginners: The Complete Guide to Mastering Python in 7 Days with Hands-On Exercises – Top Secret Coding Tips to Get an Unfair Advantage and Land Your Dream Job!

Python Programming for Beginners: The Complete Guide to Mastering Python in 7 Days with Hands-On Exercises – Top Secret Coding Tips to Get an Unfair Advantage and Land Your Dream Job!

BUY & SAVE
$24.99
Python Programming for Beginners: The Complete Guide to Mastering Python in 7 Days with Hands-On Exercises – Top Secret Coding Tips to Get an Unfair Advantage and Land Your Dream Job!
+
ONE MORE?

To sort a pandas dataframe by month name, you can convert the 'datetime' column to a 'CategoricalDtype' with the categories listed as month names. Then, you can use the 'sort_values' function with the 'CategoricalDtype' to sort the dataframe by month name. This will ensure that the dataframe is sorted in the order of the months.

How to sort a dataframe by month name while preserving the original data types?

To sort a dataframe by month name while preserving the original data types, you can use the pd.Categorical() function in pandas. Here's how you can do it:

  1. Convert the month column to a categorical data type with the correct order of months.
  2. Sort the dataframe by the month column.

Here's an example:

import pandas as pd

Sample dataframe

data = { 'date': ['2022-01-15', '2022-04-25', '2022-02-10', '2022-03-05'], 'value': [10, 20, 30, 40] }

df = pd.DataFrame(data)

Convert the month column to categorical data type

df['month'] = pd.to_datetime(df['date']).dt.month_name() df['month'] = pd.Categorical(df['month'], categories=[ 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December' ], ordered=True)

Sort the dataframe by the month column

df = df.sort_values('month')

print(df)

This will sort the dataframe by month name while preserving the original data types.

How to highlight the sorted rows in a dataframe for better visibility?

One way to highlight the sorted rows in a dataframe for better visibility is to use styling in pandas. You can apply different styles to the sorted rows to make them stand out from the rest of the dataframe.

Here is an example code snippet to highlight sorted rows in a dataframe:

import pandas as pd

Create a sample dataframe

data = {'A': [1, 3, 2, 4], 'B': [5, 7, 6, 8]} df = pd.DataFrame(data)

Sort the dataframe by column 'A'

df_sorted = df.sort_values(by='A')

Apply a custom style to highlight sorted rows

def highlight_sorted_rows(x): sorted_rows = pd.Series(0, index=x.index) sorted_rows.loc[x.sort_values(by='A').index] = 'background-color: yellow' return [sorted_rows]

df_sorted.style.apply(highlight_sorted_rows, axis=None)

In this code snippet, we first create a sample dataframe df and then sort it by column 'A' to create df_sorted. We define a custom function highlight_sorted_rows to highlight the sorted rows by changing their background color to yellow. Finally, we apply this custom style to the sorted rows using the apply method on the dataframe.

You can customize the style further by changing the background color or adding additional styling options to make the sorted rows more visible in the dataframe.

What is the default sort order for a pandas dataframe in Python?

The default sort order for a pandas dataframe in Python is ascending order.